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A simple numerical method for calculating NMR spectral line shapes resulting from a
Gaussian line by a partial narrowing due to a motion with the exponential spectral
autocorrelation function of the form exp (–|τ|/τc) was developed. It was found that the par-
tially narrowed line is narrower not only than the parent Gaussian line with the second mo-
ment of ωp

2 but also than the Lorentzian line with the half-width of 2ωp
2 τc obtained from the

extreme narrowing approximation. The central intensity increase compared with the closer
of these two lines is less than 50.2%. Asymptotic developments for large values of ω – ω0
and for large values of ωpτc were derived. Two-term approximation applied to the extreme
narrowing case led to a very simple modification of the Lorentzian line having the correct
second moment ωp

2 . Analysis of this modified Lorentzian line showed that attempts to esti-
mate ωp

2 from truncated second moments of Lorentzian lines without knowledge of τc are
hopeless. The case of the polyexponential spectral autocorrelation function with all but one
correlation times fast enough to allow for the extreme narrowing, modelling the case of an
anisotropic motion, is also considered.
Keywords: NMR spectroscopy; NMR line shape calculation; Partial motional narrowing of
Gaussian line; Exponential spectral autocorrelation function; Second moment; Anisotropic
motion.

In a recent study of NMR spectra of poly(2-ethylhexyl acrylate)-block-
poly(acrylic acid) micelles in water1, multiexponential relaxation of trans-
verse magnetization with a peculiar behaviour of T2 relaxation times was
observed. Since a narrowing of spectral lines in magic angle spinning was
observed simultaneously1, it was assumed that incomplete averaging of the
dipole–dipole interactions due to a motion not fast enough was responsi-
ble. Hence, it was worth performing a more detailed study of the calcula-
tion of the line shapes of partially narrowed NMR spectral lines.
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The problem of motional and exchange narrowing of NMR and EPR spec-
tral lines was extensively studied by Anderson and Weiss2 and by Ander-
son3. For a very fast motion, a simple Lorentzian line (the narrower the
faster was the motion) resulted. For every speed of the motion, a simple re-
sult was obtained also for the Gaussian spectral line, where the narrowed
line shape was shown to depend only on the spectral autocorrelation func-
tion ϕ τω∆ ( )

( )( ) ( )ϕ τ ω ω ω τ ω ω ωω∆ ( ) ( ) ( ) / ( ) .= − + − −t t t0 0 0

2 (1)

With this spectral autocorrelation function, the Fourier transform ϕ(τ) of
the narrowed Gaussian line becomes

ϕ τ ω ϕ τω

τ

( ) exp ( ( )( ) ) ,= − −∫p d2

0
∆ x x x (2)

where ωp
2 is the second moment of the Gaussian line being narrowed. An-

derson further considered two examples of the spectral autocorrelation
function, the exponential one, ϕ τω∆ ( ) = exp (–|τ|/τc), suitable for a Markovian
motion, and the Gaussian one, ϕ τω∆ ( ) = exp (–πτ2/(4τ c

2 )), which may simulate
the case where the possible rate of the frequency change is severely limited3

(exchange narrowing). For the latter spectral autocorrelation function, an
approximate calculation of the central intensity and half-width of the nar-
rowed line in the intermediate region (i.e., around ωpτc = 1) was given in
Appendix III of the paper3. On the other hand, the former spectral
autocorrelation function is more appropriate for a motional narrowing.
Therefore, it was worth considering more thoroughly the motional line nar-
rowing with the exponential spectral autocorrelation function. Fortunately,
it was possible to develop a simple numerical method for calculating nar-
rowed line shapes in this case, avoiding numerical Fourier transform, which
enabled an easy calculation of spectral lines and a detailed analysis of their
behaviour in some limiting cases. The results of this consideration are re-
ported in the present paper.

MATHEMATICAL METHODS

According to Eq. (36) of ref.3, the Fourier transform ϕ(τ) of the Gaussian
spectral line with the second moment ωp

2 narrowed due to a motion with
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the exponential spectral autocorrelation function ϕ τω∆ ( ) = exp (–|τ|/τc) is
given by

ϕ τ ω τ τ τ τ τ( ) exp ( [ | |/ exp ( | |/ )]) .= − − −p
2

c c c
2 1 (3)

Inverting the Fourier transform, we obtain for the spectral line intensity

I( ) exp ( ( ) )exp ( [ | |/ exp ( |ω ω ω τ ω τ τ τ τ= − − − − −
−∞

∞

∫ i p
2

c c0
2 1 |/ )]) / ( ) ,τ τ πc d 2 (4)

where ω0 is the center of the spectral line. Due to the symmetry of the func-
tion ϕ(τ) , Eq. (4) can further be rewritten in the form

I( ) exp ( ( ) [ / exp ( / )]ω ω ω τ ω τ τ τ τ τ= − − + − − −
∞

∫Re[ i p
2

c c c
0

0
2 1 ) ] ,dτ / π (5)

where Re means the real part of the expression in the brackets. Note that
taking in Eq. (5) the imaginary part instead of the real one gives the disper-
sion component of the narrowed line. To solve the integral in Eq. (5), we
use the substitution ω τ τ τp

2
c c
2 exp( / )− = z, hence τ = –τc ln (z/ω τp

2
c
2 ), dτ =

–τc dz/z. After some rearrangements, we obtain

I( )ω = τ ω τ ω τ γ ω τω τ ω ω τ
c p c

i
p c p c

p c cRe[( ) exp ( ) (( )2 2 2 2 2 2
2 2

0− − − + i c p c( ) , )] / ,ω ω τ ω τ π− 0
2 2

where γ (a, x) = z z zax − −∫ 1

0
exp( )d is the incomplete gamma function. Now,

combining Eqs (6.5.4) and (6.5.29) of ref.4, we have

γ(a, x) = xa exp (–x) ( ( ) / ( ))x a a nn

n

Γ Γ + +
=

∞

∑ 1
0

= xa exp (–x) ( / ( ))x a kn

k

n

n

+
==

∞

∏∑
00

,

where Γ(t) = u u ut −∞
−∫ 1

0
exp( )d is the complete gamma function. Replacing

the incomplete gamma function by the above series gives the final result

I kn

k

n

n

( ) Re[ (( ) / (ω τ ω τ ω τ ω ω τ= + +
==

∞

∏∑c p
2

c p
2

c 0 ci( - )2

00

2 ))] / π (6)

or, if we set ω τp c
22 = x, (ω – ω0)τc = y,
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I x x y kn

n k

n

( ) Re[ ( / ( ))] / .ω τ π= + +
=

∞

=
∑ ∏c i

0 0

(6a)

In considering convergence properties of the series (6a), we can see that for
a real y and a real positive x, replacing y with zero increases the absolute
value of every term of the series, as it leads to a decrease in the absolute
value of each factor of the product in the denominator. Hence, the series

a x x kn
n

n

n k

n

=

∞

=

∞

=
∑ ∑ ∏= +

0 0 0

( / ( )) (7)

is a majorant to the series in Eq. (6a) with the same real positive x and any
real y. Now, starting with some n0, the series (7) itself has a majorant
an 0

(x/(x + n0))n n− 0 , which is a convergent geometric series. From its known
sum we see that the error made by terminating the series (7) at n = n0 is less
than an 0

x/n0. So, the series (7), and hence also the series in Eq. (6a), both
converge for every real positive x and real y. For large x, the series still con-
verge without loss of accuracy; however, the convergence is slow. For
example, for x = 10 000 (i.e., ωpτc = 100), about 700 terms are necessary to get
an < 10–13, the error in the sum is then less than 1.5 · 10–12.

In the case of a fast motion (i.e., small τc), the value of x is small so that a
few of the first terms of the series (6a) are sufficient to obtain full conver-
gence. Taking the first term, we obtain

I x x y( ) / ( ( )) / ( ( ( ) )) ,ω τ π ω τ π ω τ ω ω= + = + −c p c p c
2 2 2 4 2

0
2 (8)

which is the well-known Lorentzian line of the half-width of 2ω τp c
2 for the

case of extreme narrowing. We can see that the second term of the series
(6a) contains in its real part the value of x in the same (first) power as the
first term does, and only the third and next terms contain only higher pow-
ers of x. So, in considering the limiting case x → 0 two first terms should be
considered:

I x x y x y

x x x

( ) Re[( / ( ) ) / ( )] /

( )( )

ω τ π =

τ

= + + + +

= + +
c

c

i i1 1

1 2 1 / ( ( )(( ) )) &

& [ / ( ( ))] / (

π

τ π

x y x y

x x y y

2 2 2 2

2 2 2

1

1 1

+ + + =

= + × +c ) .

(9)
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In the last step, x was neglected compared with unity. The last expression
in Eq. (9) is not exactly normalized, its normalization can be achieved by
multiplying it by the factor 1 + x. Then we obtain

I x x y x y( ) [ / ( ( ))] ( ) / ( )ω τ π= + × + + =c
2 2 21 1

= + − × + + −[ / ( ( ( ) ))] ( ) / ( ( )ω τ π ω τ ω ω ω τ ω ωp c p c p c
2 4 2

0
2 2 2

0
21 1 τ c

2 ) . (10)

The last factor in Eq. (10) may be looked on as a correction to the
Lorentzian line (8). With this correction, the line is exactly normalized and
its second moment is exactly ωp

2 as it should be. The correction factor may
become important for ω – ω0 = ±1/(10τc), where it decreases the intensity by
about 1%, and for larger |ω – ω0|, where the intensity decreases more, and
eventually, the (ω – ω0)–4 decrease is obtained for |ω – ω0| > 10/τc compared
with the (ω – ω0)–2 decrease in the uncorrected Lorentzian line. The increase
caused by the numerator is quite negligible and the second term in the nu-
merator was introduced just to obtain the exact normalization. It is quite
clear that in the usual case of the thermal motion, where τc is about
10–6–10–8 s, the correction might be seen only for |ω – ω0| > 105 s–1, i.e., very
far beyond the spectral region measured. This means that any attempts
made in the past to introduce some truncated second moments of the
Lorentzian line are quite arbitrary and cannot lead to the value of ωp

2 ,
which only may be estimated if we have an at least rough estimate of τc.

The case of the slow motion (large τc) cannot be treated as easily as the
fast motion. Its discussion is done in the subsequent paragraph where the
asymptotic developments for large τc and for large |ω – ω0| are considered.

Equation (6a) calculates the central intensity of the narrowed line with-
out any loss of accuracy and other points with the same absolute accuracy.
However, in far wings, a considerable loss of the relative accuracy occurs,
since the leading terms of both the first two members of the sum in Eq. (6a)
decrease with y–2 and these terms cancel yielding the y–4 decrease in the re-
sult. This can be avoided by summing up the first two members of the sum
analytically as in Eq. (9); however, even then, some loss of accuracy persists
in far wings at large x, since the leading term of Eq. (9) is τcx(x + 1)(2x +
1)/(πy4), whereas that of Eq. (6a) is τcx/(πy4). This drawback can be avoided
as follows; at this, complex numbers arithmetic appearing in Eq. (6a) is re-
moved as well.
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We start from the identity

( )1 1 1

20

/ ( ) ( ) [( )(
[ / ]

x k y x ij i
j i
i

i j

j

k

j

j i+ + = − + +−
−
+

==
− −∑∏ i ( )1

i ) −

( )–iy x k x k yj i
i

k

i

k j

i

−
==

−

+ + +∏∏] ( ) / (( ) )2 2 2

0

2 1

(11)

(for j = 2i + 1, ( )2
2 1

x k
k j

i

+
=

−

∏ = 1/(2x + 2i) and ( )j i
i
− = 0 should be set, and also

( )j i
i

− −1 = 0 for j = i). Now

( ) ( ) ( , )x i x k S j ik
i j k

k

i j

k j

i

+ + = −−
+ − −

=

+ −

=

−

∑2 2 1 21
2 1

0

2 12 1

∏ xk , (12)

where Sk(j, i), j ≤ i, is the k-th symmetric form of the subsequent integers
from j + l to i. There is S0(j, i) = 1, Sk(i, i) = 0 for k > 0, and

S j i S j i jS j ik k k( , ) ( , ) ( , ) .− = + −1 1 (13)

Herefrom, S j i i j i j S j i i j i j i j1 21 2 1 3( , ) ( )( ) / , ( , ) ( )( )( ( )= − + + = − − − + 2 + 5i + 7j +
2)/24, and so forth. Introducing Eq. (11) into Eq. (6a) and summing up with
respect to j at constant i yields

I x U x x k yn
n

k

n

n

( ) ( [ ( ) / (( ) )]) /ω τ π= + +
==

∞

∏∑c
2 2

01

, (14)

where Un(x) = nxn–1 + n(n – 1)(n + 4)xn–2 + n(n – 1)(n – 2)(3n2 + 25n + 78)xn–3/6
+ ... are polynomials of x with positive integer coefficients. Obtaining next
coefficients in a closed form is cumbersome; they can be calculated by nu-
merical summation with respect to j using Eq. (13) in calculating Sk(j, i). At
this, great loss of accuracy occurs at large n’s, so that the calculation should
be performed to full accuracy with multiple-precision integer arithmetic for
such n’s.

The series in Eq. (14) needs more (about twice) terms than in Eq. (6a)
to converge; however, due to the absence of the complex numbers arith-
metic, the calculation of the line shape by Eq. (14) is still faster than that
by Eq. (6a) when xnUn(x) and (x + k)2 values are precalculated once for
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all values of y. No loss of accuracy occurs since all terms involved are
positive.

Asymptotic Developments

To obtain asymptotic behaviour of the narrowed line for large τc and for
large |ω – ω0|, we need the asymptotic developments of the function γ(x + y, x)
for large positive x and for large pure imaginary y. Furch5 studied the asym-
ptotic behaviour of the function Γ(α, x) = Γ(α) – γ(α, x) and found an
asymptotic development for the function Γ(α + 1, α + x) for large α (his n –
1) and small x (his 1 – α). Tricomi6 later derived the asymptotic develop-
ment for the function γ(α + 1, α + x) for large α in terms of α and of the
value x(2α)–1/2 and also for the function Γ(α + 1, x) for both α and x large,
so that x – α is large compared with α1/2, in terms of α and x – α. For large y,
the series in Eq. (6a) is itself asymptotic; however, obtaining from it a series
in negative powers of y is very laborious. Due to this fact and also as we
need a development of γ(α, x) in terms of x and α – x rather than existing
developments in terms of α – 1 and x – α + 1, we use an alternative method
for deriving the desired asymptotic developments.

We consider the function

f x y x x x y x x x z zx y x y x y( , ) exp ( ) ( , ) exp ( ) exp (= + = −− − − − + −γ 1 ) .dz
x

0
∫ (15)

Then I(ω) = τc Re[f(ωp
2 τ c

2 , i(ω – ω0)τc)]/π. Using the substitution z = x exp (–τ),
we find that

f x y y x( , ) exp ( )exp ( [ exp ( )])= − − − − =
∞

∫ τ τ τ τ1
0

d

= − − × − + − −
∞

exp ( )exp ( / ) exp ( [ / exp ( )]) .τ τ τ τ τ τy x x2 2

0

2 1 2 d∫ (16)

Expanding the last factor into the Taylor series with respect to x, we get the

expression 1 + x Tn
n

n

( )τ
=

∞

∑
1

, where T nn
n( ) ( / exp( )) / !τ τ τ τ= − + − −1 22 . Taking

the derivative of Tn with respect to τ, we find dTn(τ)/dτ = –nTn(τ) +
τ2Tn–1(τ)/2, T0(τ) = 1. We further expand Tn(τ) into the Taylor series,
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T a kn
k n

n k
k

k n

( ) ( ) / !,τ τ= − +

=

∞

∑ 1
3

and substitute this expansion into the expres-

sion for dTn(τ)/dτ. Comparing coefficients at τk, we find that

a na k k an k n k n k, , ,( ) /+ − −= + −1 1 21 2 (17)

for n > 0 and k > 3n. Further a0,0 = 1, a0,k = 0 for k > 0, an,k = 0 for k < 3n,
and an,3n = (3n – 1)(3n – 2)an–1,3n–3/2 = (3n)!/(n!6n). From Eq. (17) it follows,
that all nonzero an,k are positive integers, a1,k = 1 for k > 2, the values of a2,k
starting from k = 6 are 10, 35, 91, 210, 456, 957, 1 969 (2k–1 – k(k + 1)/2 – 1),
of a3,k starting from k = 9 they are 280, 2 100, 10 395, 42 735, a4,12 = 15 400.
Then Eq. (16) becomes

f x y y x x an

n

k n
n k

k( , ) exp ( )exp ( / )( ( ) /,= − − + −
=

∞
+∑τ τ τ2

1

2 1 1 k
k n

!) .dτ
=

∞∞

∑∫
30

(18)

Using the substitution τ = u/x1/2, the double series in Eq. (18) becomes

( ) / ! ( )/
,

/
,− = −+ −

=

∞

=

∞
−

+∑∑ 1 12

31

2
2

k n k n k
n k

k nn

k n
n ku x a k x a n

k n

n

k

k

u k n( ) / ( ) !;− ++

==

∞

∑∑ 2

11

2

the latter expression is obtained from the former by using a new summa-
tion variable k – 2n instead of the k (and denoting it again k) and by inter-
changing the order of summation. So,

f x y x u y x u( , ) exp ( ( / ) / )(/ /= − − +−
∞

∫1 2 1 2 2

0

2 1

+ − − +−

=

∞

+
+

=
∑ ∑x a u k n uk

k

n
n k n

k n

n

k
/

,( ) ( ) / ( ) !) .2

1
2

2

1

1 2 d (19)

Now,

( ) exp ( / ) (( / ) exp ( / ) (/− − − =
∞

∫ u uv u u v vr r2

0

1 2 22 2 2d d erfcπ / )) //21 2 dv r =

= +( / ) exp ( / ) ) ( ) ( ) ,/π 2 21 2 2v R v S vr rerfc (v / 21/2 (20)

where erfc (x) = (2/π1/2) exp (– ) , ( ) , ( ) ,t t R v S v
x

2
0 01 0d = =

∞

∫ R v R vr r+ =1 ( ) ( )d /dv +

vR vr ( ), S v S v v R vr r r+ = −1 ( ) ( ) / ( )d d . The recursive formulae for Rr(v) and Sr(v)
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are derived by applying the d/dv operator to Eq. (20). From these formulae
follows: Rr(v) is a polynomial of degree r, which is even (contains only even
powers of v) if r is even and odd if r is odd; Sr(v) is a polynomial of degree
r – 1, which is odd if r is even and even if r is odd. Note that Rr(v) =
i H i– / /( / )r r

r v2 22 1 2− , where Hr is the Hermite polynomial of degree r. Using
Eq. (20) in Eq. (19), we obtain eventually

f x y y x P
n

n( , ) (( / ) exp ( / ( )) )/=
=

∞

∑ π 2 21 2

0

2 erfc (y / (2x)1/2 ( / )/y x1 2 +

+ +Q y x xn
n( / )) / ,/ ( )/1 2 1 2 (21)

where P0(v) = 1, Q0(v) = 0,

Pn(v) = (– ) ( ) / ( ) !,1 22 2
1

k
k n k n k

k

n

a R v n k+ +
=

+∑ ,

Qn(v) = (– ) ( ) / ( ) !,1 22 2
1

k
k n k n k

k

n

a S v n k+ +
=

+∑ . The series (21) is divergent; how-

ever, at least for large positive x and complex y with a non-negative real
part, it is a good asymptotic development for f(x, y). Pn(v) is a polynomial of
degree 3n and its parity is the same as that of n, whereas Qn(v) is a polyno-
mial of degree 3n – 1 and of the parity opposite to that of n. Calculating
Pn(v) and Qn(v) from expressions following Eq. (21) is a rather laborious task
and a considerable loss of accuracy occurs in performing indicated sums for
higher n. Fortunately, it was possible to derive much simpler expressions
for Pn(v) and Qn(v) shown below.

Taking in Eq. (15) partial derivatives with respect to x and y, we easily
find that

x f f yfx y( ) .− + = 1 (22)

We further introduce the function g(x, y) = f(x, y) exp (–y2/(2x)). Substi-
tuting

f g y x= exp ( / ( ))2 2 (23)

into Eq. (22), we find further
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x g g y g x y xx y( ) / ( ) exp ( / ( )) .− − = −2 22 2 (24)

Considering that exp (v2) erfc (v) = ( ) / ( / )− +
=

∞

∑ v nn

n

Γ 2 1
0

, we see that Eq. (21)
can be rewritten in the form

f x y f y xn k
k n k

kn

( , ) / .,
( )/= + +

=

∞

=

∞

∑∑ 1 2

00

(25)

Substituting Eq. (25) into Eq. (22) and comparing coefficients at yk/x(n+k+1)/2,
we find –(n + k + 1)fn,k/2 – (k + 1)fn+1,k+1 + fn+1,k–1 = δkδn+1 provided we set
fn,k = 0 for k < 0 and for n < 0. Hence

f f n f n

f n k
n n

n k

0 1 1 1 0

1 1

1 1 2, , ,

,

, ( ) /

( (

= − = − + ≥

= − + +
+

+ +

for 0 ,

1 2 1 0 01 1

0 2 0

) / ) / ( ) , ,

/ (
, ,

, ,

f f k k n

f f k
n k n k

k k

+ + > ≥

= +
+ −

+

for

2 0) .for k ≥

(26)

Provided the coefficients fn,0 are known from another source, Eq. (26) is a
simple recursive formula for calculating coefficients fn,k by increasing n by
one. Two different methods of obtaining fn,0 are given below. Comparing
Eqs (25) and (21), we further see that

( / ) exp ( / ) ) ( ) ( ) ./
,π 2 21 2 2v P v Q v f vn n n k

k

k

erfc (v / 21/2 + =
=0

∞

∑ (27)

Similarly to Eqs (25)–(27), using Eq. (24) instead of Eq. (22), we derive

g x y g y xn k
k n k

kn

( , ) / ,,
( )/= + +

=

∞

=

∞

∑∑ 1 2

00

(28)

further

g k k k g k

g
k

k
k

n

0 2 1 0 22 2 1 0 0 0, ,( ) / ( !( )) , ,+
−

+

= − − + ≥ = >for for

1 1 0 2 1 11 2 0 1 4 0, , , ,( ) / , ( ) / ,= − + ≥ = − + >−n g n g n g n

g
n n nfor for

n k n k n kn k g g k k n+ + −= − + + + + > ≥1 1 21 2 2 1 1 0, , ,(( ) / / ) / ( ) , ,for

(29)
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and

( / ) ( ) ( )exp ( / ) ( / ) )/ /π π2 2 21 2 2 1 2P v Q v v v Pn n+ − − erf ( / 21/2
n n k

k

k

v g v( ) ,,=
=

∞

∑
0

(30)

where erf (x) = 1 – erfc (x) = (2/π1/2) x n nn n

n

2 1

0

1 2 1+

=

∞

+∑ (– ) / ( !( )). Further, gn,0 =
fn,0 and gn,1 = fn,1. Now we set

P v p v Q v q vn n k
k

k

n

n n k
k

k

n

( ) , ( ), ,= =
= =

−

∑ ∑
0

3

0

3 1

(31)

with pn,k = 0 for n + k odd and qn,k = 0 for n + k even. Considering the parity
of the polynomials Pn and Qn and of the erf function, it immediately fol-
lows from Eqs (30) and (31) that

p g n kn k n k,
/

,( / ) ,= +2 1 2π for even (32)

and from Eqs (27) and (31)

q f nn n, , .0 0= for odd (33)

Since (dn(exp (v2/2) erfc (v/21/2))/dvn)v=0 = n!(–1)n2–n/2/Γ(n/2 + 1), by Eq. (20)
it follows that R2n(0) = (2n)!2–n/n! and S2n+1(0) = –n!2n, which allows to cal-
culate the values pn,0 and qn,0 using equations following Eq. (21) and then
the values gn,0 = fn,0 using Eqs (32) and (33). At this and in using the recur-
sive formula (29), a great loss of accuracy occurs at larger n or k, so that it is
worth converting the calculation to integers to perform it exactly by multiple-
precision integer arithmetic. For this purpose, we set

g b k n kn k n k
k n k

, ,
/ ( )/( ) ( / ) / ( ! (( ) / )) .= − − +−1 2 2 3 2 11 2 3 2π Γ (34)

With this substitution, one finds

b a n n n k an n n
k

n k n k
k

, , ,( ) ( ) ....( ) ,0 3 3 21 3 3 2 3 2 2= + − − − + − −
=1

1n −

∑ (35)
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b0,k = 1, and

b n k n k b k k bn k n k n k, , ,( )( ) / ( )( ) /= − + − + − −− − − −3 1 2 1 2 21 1 1 3 for k > 0. (36)

It follows that b1,k = 1, b2,k = k + 4, b3,k = k2 + 19k + 28, b4,k = k3 + 61k2 + 394k +
160, and so forth.

From Eqs (27), (32), and (23) and considering the parity of the terms

involved, for n + k odd, it follows further that qn,k = 2 2 12

0

−
−

=
∑ +j

n k j
j

k

g j/
, / ( / )Γ or

qn k, =

= − − ++ −( / ) ( ) / ( ! (( ) / ) ((/
,

( )/π 2 1 2 3 2 11 2 3 2j
n j

n k jb j n j kΓ Γ − +
=
∑ j
j

k

) / )) .2 1
0

(37)

Now, using Eq. (6.1.18) of ref.4

( ) ! ,3n qn k =

( )= − − − + −
=

− −∑ ( ) (( ) / ) / ((,
( )/1 2 3 1 2 13

0

3 1 2j
j
n

j

k

n j
n kb n j kΓ Γ j) / ) .2 1+ (38)

Since the leading term of S3n(v) is –v3n–1 and that of R3n(v) is v3n, using the
equations following Eq. (21) and Eqs (31), (32), and (34), we obtain
q p g b nn n n n n n

n
n n, ,

/
, ,( / ) ( ) / ( ) !,3 1 3

1 2
3

1
32 1 3−

−= − = − = −π so that using Eq. (38)
with k = 3n – 1 yields

( )( ) .,− =
=
∑ 1 03

0

3
j

j
n

j

n

n jb (39)

Suppose that for j ≥ 0, bn–1,j are given by a polynomial of j of a degree at
most n – 2 (an induction proposal valid for n = 2). Then, using Eq. (36), bn,j
for j > 0 are given by a polynomial of j of a degree at most n – 1, since the
terms with jn cancel. Then Eq. (39) can be valid only when bn,0 is given by
the same polynomial as bn,j. This gives another method to calculate gn,0:
spread the equality b1,k = 1 down to k = 3 – 3n and successively use the re-
cursion (36) with any integer k and then Eq. (34). Also, Eq. (36) can be used
for successive expressing bn,k for individual n’s as polynomials of k.
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Note that bn,jΓ((3n – 1 – j)/2 + 1)/Γ((k – j)/2 + 1) is a polynomial of j of a
degree lower than 3n. So, spreading the summation in Eq. (38) up to 3n
gives zero, hence

( ) ! ,3n qn k =

( )= − − − + −+ − −( ) (( ) / ) / (( ) /,
( )/1 2 3 1 2 11 3 3 1 2j

j
n

n j
n kb n j k jΓ Γ 2 1

1

3

+
= +
∑ ) .

j k

n

(40)

Here the summation terms for j = k + 2, k + 4, k + 6, and so forth are zero.
Equation (40) says the following: when the asymptotic development of
exp (y2/(2x)) erfc (y/(2x)1/2) (see ref.4, Eq. (7.1.23)) is used for a large y in
Eq. (21), the whole Qn(y/x1/2) cancels and only negative powers of y are
retained. Hence, great loss of accuracy occurs at large values of y making
Eq. (21) unsuitable for a calculation. Equations (28) and (23) should be used
instead. For calculating (3n)!qn,k, either of Eqs (38) or (40) can be used with
integer arithmetic. For larger n, multiple precision should be used due to
the great loss of accuracy.

With I(ω) = τc Re[f(ω τp
2

c
2 , i(ω – ω0)τc)]/π, the asymptotic development

reads

I(ω) = (2π)–1/2 ωp
–1 exp (–z2/2)[1 + (2/π)1/2((1/3 – z2/6) exp (z2/2) –

– (z/2 – z3/6) D(z))/(ωpτc) + (1/12 – 3z2/8 + z4/6 – z6/72)/(ωpτc)2 +

+ (2/π)1/2((4/135 – 241z2/1080 + 293z4/2160 – 13z6/648 +
(41)

+ z8/1296) exp (z2/2) – (z/8 – 47z3/144 + 37z5/240 – z7/48 +

+ z9/1296) D(z))/(ωpτc)3 + (1/288 – 5z2/32 + 347z4/1152 – 617z6/4320 +

+ 23z8/960 – z10/648 + z12/31104)/(ωpτc)4 + ....] ,

where z = (ω – ω0)/ωp, and D(z) = exp ( / )t t
z 2

0
2 d∫ is the Dawson integral.

Taking just the first term (the unity) in the brackets yields the parent
non-narrowed Gaussian shape back.

The asymptotic development for large |ω – ω0| (i.e., large y) is sought in
the form
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f x y f x yn k
n k

n k

kn

( , ) ( ) / .,= − + +

=

∞

=

∞

∑∑ 1 1

10

(42)

With Eq. (22), we obtain

f f nf k fn k n k n k0 1 1 1 21 2, , , ,, ( )= = + −− − − (43)

when setting fn,k = 0 for n < 0 and for k ≤ 0. Then f0,k = 0 for k > 1, fn,k = 0
for k ≤ 2n, f1,k = 1 for k > 2, f2,k = 2k–2 – k for k > 4, f3,k = 3k–2/2 – (k + 1)2k–3 +
(k2 – k + l)/2 for k > 6, and, for n > 1, fn,2n+1 = (2n – 1)(2n –3).... × 5 × 3 and
fn,2n+2 = n(2n + 1)(2n – 1).... × 7 × 5. Herefrom

I x y x x y x x x y( ) [ / ( ) / ( ) /ω τ= + − + − + +c
4 2 6 3 2 810 105 56

+ − + − +( ) / ....] / ,1260 1918 2464 3 2 10x x x x y π (44)

x = ω τp
2

c
2 , y = (ω – ω0)τc. This is exactly what is obtained by expanding Eq. (6a)

or (14) in negative powers of y. For a numerical calculation, Eq. (14) (or
(6a)) is more suitable since it is convergent (not semidivergent like Eq. (44));
moreover, Eq. (14) involves positive terms only, so that no loss of accuracy
occurs.

For large x, the large y asymptotic development (44) should be expressed
in terms of the variable y/x1/2 instead of y. Transforming Eq. (44) in this way
yields only negative powers of x in the numerator, so that the transformed Eq.
(44) gives the asymptotic development for both y/x1/2 (i.e., |ω – ω0|/ωp) and x
large. This is exactly what is obtained by the asymptotic development of
exp (y2/(2x)) erfc (y/(2x)1/2) for large y/x1/2 in Eq. (21).

The Anisotropic Case

Fast segmental motions of a polymer chain are rather anisotropic, so that
the second-order spherical-harmonics autocorrelation function G(t), de-
termining the T1, T2, and NOE values, is multiexponential (see, e.g., ref.7,
Eq. (7)). As a consequence, the simple Anderson approach as such cannot
be used for this case. Although the spectral autocorrelation function, ϕ∆ω(τ),
is generally different from the second-order spherical-harmonics one, G(t),

Collect. Czech. Chem. Commun. (Vol. 67) (2002)

418 Jakeš:



it seems reasonable to use a multiexponential function for the spectral
autocorrelation one as well, at least as an approximation. The multi-
exponential spectral autocorrelation function reads

ϕ τ α τ τ αω∆ ( ) exp ( | |/ ),= − =
==
∑∑ i i i
i

r

i

r

1
11

(45)

with a finite or infinite r. Then the Fourier transform ϕ(τ) of the narrowed
Gaussian line becomes

ϕ τ α ω τ τ τ τ τ( ) exp ( [ | |/ exp ( | |/ )]) .= − − −
=

∏ i i i i
i

r

p
2 2

1

1 (46)

When all τi except for a single one (τ1) allow for the extreme narrowing ap-
proximation, we have

ϕ(τ) = exp (α1ω τp
2

1
2 [1 – |τ|/τ1 – exp (–|τ|/τ1)]) × exp (– ω τ α τp

2 | | i i
i

r

=
∑

2

), or, if we set

α = α1, τc = τ1 and introduce an average fast correlation time τf = α τi i
i

r

=
∑

2

/(1 – α),

ϕ τ αω τ τ τ τ τ α( ) exp ( [ | |/ exp ( | |/ )]) exp ( (= − − − × − −p c c c
2 2 1 1 ) | |) .ω τ τp f

2 (47)

We see that the narrowed shape is the convolution of the Anderson shape
originating from the slow correlation time τc and the parent second mo-
ment reduced by the factor α, i.e., αωp

2 , with the Lorentzian shape originat-
ing from the average fast correlation time τf and the second moment
reduced by the factor 1 – α, i.e., (1 – α)ωp

2 .
Setting x = ωp

2 τc(ατ c + (1 – α)τf), v = (1 – α)ωp
2 τcτf/x, and y = (ω – ω0)τc, and

inverting Fourier transform similarly as above, we obtain using the substitu-
tion αω τp c

2 2 exp (–τ/τc) = z

I v x v x x y v xx y( ) Re[(( ) ) exp (( ) ) ( , ( ) )] /ω τ γ= − − + −− −
c

i i1 1 1 π (48)

and

I v x x y kn

k

n

n

( ) Re[ ([( ) ] / ( ))] / .ω τ π= − + +
==

∞

∏∑c i1
00

(49)

Collect. Czech. Chem. Commun. (Vol. 67) (2002)

Calculation of Partially Narrowed NMR Line Shapes 419



Avoiding the complex numbers arithmetic by introducing Eq. (11) into
Eq. (49) and summing up with respect to j at constant i, we obtain as above

I v x U x v x k yn
n

k

n

n

( ) [ ([( ) ] ( , ) / (( ) ))] / ,ω τ π= − + +
==

∏c 1 2 2

00

∞

∑ (50)

where Un(x, v) are polynomials of x and v, again with positive integer coeffi-
cients. There is U0 = vx, U1 = v(v + 1)x2 + 3vx + 1, U2 = v(v + 1)2x3 + v(10v +
8)x2 + (24v + 2)x + 12, U3 = v(v + 1)3x4 + v(v + 1)(21v + 15)x3 + (135v2 + 100v +
3)x2 + (300v + 42)x + 180, U4 = v(v + 1)4x5 + v(v + 1)2(36v + 24)x4 + (448v3 +
700v2 + 268v + 4)x3 + (2352v2 + 1692v + 96)x2 + (5040v + 904)x + 3360, and
so forth, generally Un = v(v + 1)nxn+1 + v(v + 1)n–2n((2n + 1)v + n + 2)xn + (v +
1)n–4n((2n – 1)n2v3 + (2n – 1)(3n2 + 7n – 1)v2/3 + (3n3 + 10n2 + 15n – 10)v/6 +
1)xn–1 + (v + 1)n–6n(n – 1)(n(2n – 1)2(n – 1)v4/3 + (n – 1)(12n3 + 26n2 –31n +
6)v3/6 + (2n4 + 7n3 + 7n2 – 28n + 12)v2/2 + (n4 + 5n3 + 17n2 + 37n – 54)v/6 +
n + 4)xn–2 + ... . Other coefficients should again be obtained by numerical
summation with respect to j expanding the factor (1 – v)j–i by the binomial
theorem and summing up the coefficients at each particular power of v.
Note that U(x, 0) = U(x).

To consider the asymptotic development of Eq. (49) for large (1 – v)x, we
realize that I(ω) = τcRe[f((1 – v)x, vx + iy)]/π with the function f defined by
Eq. (15). The asymptotic development can be calculated using either Eq. (21)
or Eqs (28) and (23). One should keep in mind, however, that y in Eq. (21)
or Eqs (28) and (23) is not pure imaginary now, but complex with positive
real part, so that odd powers of y should be considered as well.

RESULTS AND DISCUSSION

Figure 1 shows the partially narrowed line shapes for the case of the slow
motion (i.e., for τc ≥ 0.5/ωp) compared with the parent Gaussian line;
(2π)1/2ωpI(ω) values are plotted versus (ω – ω0)/ωp. Scaling with ωp makes the
line shapes independent of the width of the parent Gaussian line. The nar-
rowing is striking. It is also seen that for |ω – ω0| > 2.7ωp, the wings grow
with increasing narrowing. The reason is that the (ω – ω0)–4 wing decrease
in the narrowed lines is slower than the exponential one in the parent
Gaussian line. In fact, the curves in Fig. 1 must intersect at least twice, since
both the integral intensity and the second moment do not change during
narrowing. Figure 2 shows the first-order term (multiplied by (2π)1/2ωp

2 τc,
the full curve) and the second-order term (multiplied by (2π)1/2ω τp

3
c
2 , the

dotted curve) of the asymptotic development for large τc of the narrowed
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FIG. 1
Plots versus (ω – ω0)/ωp of (2π)1/2ωp I(ω) values for the partially narrowed Gaussian lines and
the Gaussian line. The ωpτc values: 1 ∞ (the Gaussian line); 2 4; 3 2; 4 1; 5 1/2

FIG. 2
Plots versus (ω – ω0)/ωp of the first- and second-order terms of the asymptotic development for
the case of the slow motion (large τc) of the partially narrowed line shapes. 1 (the full curve):
the first-order term multiplied by (2π)1/2 ω τp c

2 ; 2 (the dotted curve): the second-order term mul-
tiplied by (2π)1/2 ω τp c
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line shape. The second-order term root at |ω – ω0|/ωp = 3.0179 is close to the
first-order one at 2.7656; this may be the reason why all curves in Fig. 1 in-
tersect nearly in the same point |ω – ω0|/ωp &= 2.7.

Figure 3 shows the partially narrowed line shapes for the case of the fast
motion (i.e., for τc ≤ 1/ωp) compared with the Lorentzian line of extreme
narrowing; πωp

2 τcI(ω) values are plotted versus (ω – ω0)/(ωp
2 τc). Due to ab-

scissa scaling with τc, the lines seemingly broaden with increasing narrow-
ing. This only means that, with the τc decrease, the narrowing proceeds
more slowly than expected from the extreme narrowing approximation.
The (ω – ω0)–4 wing decrease is apparent with curves with ωpτc of 1 and 1/2.
It turns out that the partially narrowed lines are narrower than the lines in
both limiting cases of the Gaussian line of the second moment of ωp

2 and
the Lorentzian line of the half-width of 2ωp

2 τc. The increase in the central
intensity of the narrowed line, compared with the closer of the two
limiting cases, is less than 50.19%; the greatest increase appears at ωpτc =
(2/π)1/2 = 0.7979.

For detecting the partially narrowed lines in real NMR spectra, it is worth
having their comparison with Gaussian and Lorentzian lines with opti-
mized widths and integral intensities. Least-squares optimization is
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FIG. 3
Plots versus (ω – ω0)/(ω τp c

2 ) of πω τp c
2 I(ω) values for the partially narrowed Gaussian lines and the

Lorentzian line. The ωpτc values: 1 0 (the Lorentzian line); 2 (the dotted curve) 1/4; 3 1/2; 4 1
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achieved by minimizing ( ( ) (( ) / ) / ) ,I I L w wω ω ω ω− −
−∞

∞

∫ 0 0
2 d where w and I0

are the line width and integral intensity. To find optimum wm, it is necessary

to maximize w1/2J(w), where J(w) = I L w w( ) (( ) / ) /ω ω ω ω−
−∞

∞

∫ 0 d . For Gaussian

L(x) = (2π)–1/2ωp
–1 exp (–(x/ωp)2/2), J(w) = τc exp (ω τp c

2 2

0

∞

∫ [1 – τ – exp (–τ) – w2τ2/2]) dτ/π.

This expression was calculated by the Euler–Maclaurin summation formula
(Eq. (25.4.7) of ref.4) with h = 1/(128ωpτc) and k = 3, neglecting the remain-
der R6. With large ωpτc, the asymptotic formula J(w) = (2π(1 + w2))–1/2ωp

–1 (1 +

h wn k
k

k

n

n
, ( )−

=

−

=

∞

∑∑ 2

0

1

1

/[23n/2–kΓ(3n/2 – k + 1)ω τp c
n n (1 + w2)3n/2]) can be used, where

hn,k are the coefficients of the interpolation formula for bn,k in the form bn,k
= hn,0 + khn,1 + k(k – 2)hn,2 + ... + k(k – 2)(k – 4)...(k – 2n + 4)hn,n–1. Matching
both formulae at ωpτc = 4 and several values of w checks their correctness.
The first terms of the asymptotic formula match with what is obtained by
the analytical integration of J(w) using Eq. (41). For Lorentzian L(x) =
ω τp c

2 /(π(ω τp c
4 2 + x2)), J(w) was calculated using the right-hand side of Eq. (49)

with x = (1 + w)ω τp c
2 2 , v = w/(1 + w), and y = 0. Then the optimum I0 equals

wm J(wm)/ L x x2 ( ) d
−∞

∞

∫ . For the Gaussian shape, L x x2 ( ) d
−∞

∞

∫ equals π–1/2/(2ωp),

for the Lorentzian one 1/(2πω τp c
2 ).

A comparison of the partially narrowed lines with the Gaussian lines op-
timized by the least-squares is shown in Fig. 4 and with the Lorentzian ones
in Fig. 5. For ωpτc of 4, 2, 1, and 0.5, the Gaussian wm values (i.e., the ratios
of the optimized Gaussian widths to the parent Gaussian width) are 0.9293,
0.8586, 0.7210, and 0.4935; the optimized integral intensities are 0.9876,
0.9737, 0.9426, and 0.8791, respectively. For ωpτc of 0.25, 0.5, and 1, the
Lorentzian wm values (i.e., the ratios of the optimized Lorentzian widths to
the Lorentzian width in the extreme narrowing approximation) are 0.9880,
0.9024, and 0.6616; the optimized integral intensities are 1.0509, 1.1269,
and 1.1984, respectively. At ωpτc = 1/4, both compared lines nearly match.
It is seen that the main difference found in the line comparison is the in-
creasing wing intensity in proceeding narrowing. This becomes much more
striking when a comparison with Gaussians and Lorentzians of the same
central intensities and half-widths is made. Here the deviations near the
line center are small and those in wings very large. For ωpτc of 4, 2, 1, and
0.5, the ratios of the Gaussian widths to the parent Gaussian width are
0.9116, 0.8228, 0.6529, and 0.4067; the integral intensities are 0.9774,
0.9519, 0.8952, and 0.7943, respectively. For ωpτc of 0.25, 0.5, and 1, the ra-
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FIG. 4
A comparison with the least-squares optimized Gaussian lines (dotted curves) of the partially
narrowed lines (full curves). (2π)1/2ωp I(ω) values versus (ω – ω0)/ωp are plotted. The ωpτc values:
1 4; 2 2; 3 1; 4 1/2

FIG. 5
A comparison with the least-squares optimized Lorentzian lines (dotted curves) of the partially
narrowed lines (full curves). πω τp c

2 I(ω) values versus (ω – ω0)/(ω τp c
2 ) are plotted. The ωpτc values:

1 1/4; 2 1/2; 3 1
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tios of the Lorentzian widths to the Lorentzian width in the extreme nar-
rowing approximation are 0.9964, 0.9576, and 0.7688; the integral
intensities are 1.0568, 1.1722, and 1.3210, respectively.

A comparison is shown of a spectrum of poly(2-ethylhexyl acrylate)-
block-poly(acrylic acid) micelles in deuterated water1 with a synthesis of eight
(plus two to catch artifact lines of residual ordinary water lying beyond the
shown part) Gaussian (Fig. 6) or Lorentzian (Fig. 7) lines, where the line
widths and integral intensities are optimized by least squares. Line overlap-
ping and the asymmetry of marginal lines at 2.385 and 0.856 ppm to some
extent mask effects expected on the basis of Figs 4 and 5. Nevertheless, it is
clearly seen, that the Gaussian shape is too weak and the Lorentzian one
too strong in wings and that a shape with intermediate wings like the An-
derson one should considerably improve the agreement between the syn-
thetic and actual spectra.

Limitations imposed by using an approximate Gaussian shape for the
parent rigid-lattice spectrum and the approximate exponential function for
the spectral autocorrelation function should be briefly discussed. Testing
dipolar interactions in the rigid cubic lattice revealed some deviations of
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FIG. 6
A comparison of a spectrum of poly(2-ethylhexyl acrylate)-block-poly(acrylic acid) micelles in
deuterated water1 with a synthetic spectrum of Gaussian lines. Full curve: the synthetic spec-
trum. Dots: the actual spectrum
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the M4/M 2
2 ratio from the Gaussian value of 3; however, it was believed that

these were not so important as to make the Gaussian shape grossly incor-
rect8. It turns out that the exact shape is more flat in the center of the line
than the Gaussian shape. The necessity of using the Gaussian shape stems
primarily from its generality, besides its simplicity. Since, in the extreme
narrowing, the resulting line shape is Lorentzian regardless of the rigid-
lattice spectrum3, it may be believed that at least at considerable narrowing
(small values of ωpτc), the differences of the calculated narrowed shape
from the exact one are negligible.

Motions effecting band narrowing are jump-like Markovian processes
(molecular collisions in a solution, three- and four-bond motions7 in a flex-
ible polymer chain). For such processes, the correlation function is expo-
nential (ref.3, Eq. (35)), or multiexponential when the motion is
complicated. A multiexponential correlation function with a narrow distri-
bution of correlation times (say, within one half decade) can be well ap-
proximated with a single-exponential correlation function in view of the
low resolution of the integral transform inversion. The case when, in addi-
tion to one correlation time causing partial narrowing, some correlation
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FIG. 7
A comparison of a spectrum of poly(2-ethylhexyl acrylate)-block-poly(acrylic acid) micelles in
deuterated water1 with a synthetic spectrum of Lorentzian lines. Full curve: the synthetic spec-
trum. Dots: the actual spectrum
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times causing extreme narrowing appear is considered in Part “The Aniso-
tropic Case”. When some nearly “rigid” correlation times appear, the
convolution with the Gaussian shape is desirable. Here, however, the devia-
tions of the parent shape from the Gaussian one may become relevant.

The situation can be visualized in a simple model of spin flipping in a
rigid spin system. When every interacting spin causes a splitting small com-
pared to the spectral line width, the Gaussian shape provides a good ap-
proximation to the parent line shape in the absence of flipping (it is exact
when spins are infinite in number, each causing infinitesimal splitting).
When all spins flip at the same rate, the spectral autocorrelation function is
single-exponential. When various spins flip with different rates, a multi-
exponential spectral autocorrelation function results. When few of interact-
ing spins cause a splitting too large to allow for the Gaussian approxi-
mation, the parent line shape may be well approximated by convolution of
the multiplet resulting from them with the Gaussian shape resulting from
the other spins. The shape narrowed by flipping then results from the con-
volution of the narrowed members of the parent convolution. The nar-
rowed shape of a multiplet consists of several Lorentzian lines, which
contain the dispersion component as well when lying off the center of the
parent line3. For several spins, the shape can be built on as convolution of
shapes resulting from individual spins. The convolution of the Lorentz and
Anderson shapes is treated in Part “The Anisotropic Case”, the convolution
of the Lorentz dispersion component shape with the Anderson shape may
be found similarly.

Clearly, the motional narrowing is much more complicated than the
spin-flipping one due to the orientational dependence of the splitting mag-
nitude. Nevertheless, the previous paragraph may serve as a good hint for
seeking a route solving situations where both the Anderson shape and its
convolution with the Lorentz shape lack sufficient accuracy to fit an actual
partially narrowed line shape.
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